P.S. Tech4ExamがGoogle Driveで共有している無料かつ新しい1Z0-184-25ダンプ:https://drive.google.com/open?id=1KozZ52LHOVRNBQfJPGeZiHlH9lFnD4jL
1Z0-184-25試験は優秀なあなたにとって難しくないかもしれませんが、試験の合格を保証するために、参照できる資料を購入することができます。我々の1Z0-184-25問題集は通過率が高いので、あなたの要求を満たすことができます。資料を購入するなら、弊社の1Z0-184-25問題集を選んでください。
トピック | 出題範囲 |
---|---|
トピック 1 |
|
トピック 2 |
|
トピック 3 |
|
トピック 4 |
|
トピック 5 |
|
インターネットで高品質かつ最新のOracleの1Z0-184-25の試験の資料を提供していると言うサイトがたくさんあります。が、サイトに相関する依頼できる保証が何一つありません。ここで私が言いたいのはTech4Examのコアバリューです。すべてのOracleの1Z0-184-25試験は非常に重要ですが、こんな情報技術が急速に発展している時代に、Tech4Examはただその中の一つです。では、なぜ受験生たちはほとんどTech4Examを選んだのですか。それはTech4Examが提供した試験問題資料は絶対あなたが試験に合格することを保証しますから。なんでそうやって言ったのはTech4Examが提供した試験問題資料は最新な資料ですから。それも受験生たちが実践を通して証明したことです。
質問 # 47
A machine learning team is using IVF indexes in Oracle Database 23ai to find similar images in a large dataset. During testing, they observe that the search results are often incomplete, missing relevant images. They suspect the issue lies in the number of partitions probed. How should they improve the search accuracy?
正解:A
解説:
IVF (Inverted File) indexes in Oracle 23ai partition vectors into clusters, probing a subset during queries for efficiency. Incomplete results suggest insufficient partitions are probed, reducing recall. The TARGET_ACCURACY clause (A) allows users to specify a desired accuracy percentage (e.g., 90%), dynamically increasing the number of probed partitions to meet this target, thus improving accuracy at the cost of latency. Switching to HNSW (B) offers higher accuracy but requires re-indexing and may not be necessary if IVF tuning suffices. Increasing VECTOR_MEMORY_SIZE (C) allocates more memory for vector operations but doesn't directly affect probe count. EFCONSTRUCTION (D) is an HNSW parameter, irrelevant to IVF. Oracle's IVF documentation highlights TARGET_ACCURACY as the recommended tuning mechanism.
質問 # 48
What is the correct order of steps for building a RAG application using PL/SQL in Oracle Database 23ai?
正解:C
解説:
Building a RAG application in Oracle 23ai using PL/SQL follows a logical sequence: (1) Load Document (e.g., via SQL*Loader) into the database; (2) Split Text into Chunks (e.g., DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS) to manage token limits; (3) Load ONNX Model (e.g., via DBMS_VECTOR) for embedding generation; (4) Create Embeddings (e.g., UTL_TO_EMBEDDINGS) for the chunks; (5) Vectorize Question (using the same model) when a query is received; (6) Perform Vector Search (e.g., VECTOR_DISTANCE) to find relevant chunks; (7) Generate Output (e.g., via DBMS_AI with an LLM). Option B matches this flow. A starts with the model prematurely. C prioritizes the question incorrectly. D is close but loads the model too early. Oracle's RAG workflow documentation outlines this document-first approach.
質問 # 49
What is a key characteristic of HNSW vector indexes?
正解:A
解説:
HNSW (Hierarchical Navigable Small World) indexes in Oracle 23ai (A) are characterized by a hierarchical structure with multilayered connections, enabling efficient approximate nearest neighbor (ANN) searches. This graph-based approach connects vectors across levels, balancing speed and accuracy. They don't require exact matches (B); they're designed for approximate searches. They're memory-optimized, not solely disk-based (C), though persisted to disk. Hash-based clustering (D) relates to other methods (e.g., LSH), not HNSW. Oracle's documentation highlights HNSW's hierarchical nature as key to its performance.
質問 # 50
Which operation is NOT permitted on tables containing VECTOR columns?
正解:A
解説:
In Oracle 23ai, tables with VECTOR columns support standard DML operations: SELECT (A) retrieves data, UPDATE (B) modifies rows, and DELETE (C) removes rows. However, JOIN ON VECTOR columns (D) is not permitted because VECTOR isn't a relational type for equality comparison; it's for similarity search (e.g., via VECTOR_DISTANCE). Joins must use non-VECTOR columns. Oracle's SQL reference restricts VECTOR to specific operations, excluding direct joins.
質問 # 51
What is the primary purpose of the VECTOR_EMBEDDING function in Oracle Database 23ai?
正解:A
解説:
The VECTOR_EMBEDDING function in Oracle 23ai (D) generates a vector embedding from input data (e.g., text) using a specified model (e.g., ONNX), producing a single VECTOR-type output for similarity search or AI tasks. It doesn't calculate dimensions (A); VECTOR_DIMENSION_COUNT does that. It doesn't compute distances (B); VECTOR_DISTANCE is for that. It doesn't serialize vectors (C); VECTOR_SERIALIZE handles serialization. Oracle's documentation positions VECTOR_EMBEDDING as the core function for in-database embedding creation, central to vector search workflows.
質問 # 52
......
「あきらめたら そこで試合終了ですよ」という『スラムダンク』の中の安西監督が言った名言があります。この文は人々に知られています。試合と同じ、試験もそのどおりですよ。試験に準備する時間が十分ではないから、1Z0-184-25認定試験を諦めた人がたくさんいます。しかし、優秀な資料を利用すれば、短時間の準備をしても、高得点で試験に合格することができます。信じないでしょうか。Tech4Examの試験問題集はそのような資料ですよ。はやく試してください。
1Z0-184-25日本語版参考書: https://www.tech4exam.com/1Z0-184-25-pass-shiken.html
さらに、Tech4Exam 1Z0-184-25ダンプの一部が現在無料で提供されています:https://drive.google.com/open?id=1KozZ52LHOVRNBQfJPGeZiHlH9lFnD4jL